Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Signal Behav ; 19(1): 2336724, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38600704

RESUMO

Biostimulants are obtained from various sources like plants, animals, microorganisms, and industrial by-products as well as waste material. Their utilization in agriculture practices is being increased that is giving positive results. The purpose of the current study was to use plant-derived smoke (SMK) solution and biogas digestate (BGD) slurry as biostimulant to elucidate their impact on potato (Solanum tuberosum) performance. The experiment was conducted in lab as well as field conditions, and SMK and BGD solutions were prepared in varying concentrations such as SMK 1:500, SMK 1:250, BGD 50:50, and BGD 75:25. Foliar applications were performed thrice during experiments and data were collected related to photosynthesis, growth, pigments, and genome-wide methylation profiling. Net photosynthesis rate (A) and water use efficiency (WUE) were found higher in SMK- and BGD-treated lab and field grown plants. Among pigments, BGD-treated plants depicted higher levels of Chl a and Chl b while SMK-treated plants showed higher carotenoid levels. Alongside, enhancement in growth-related parameters like leaf number and dry weight was also observed in both lab- and field-treated plants. Furthermore, DNA methylation profile of SMK- and BGD-treated plants depicted variation compared to control. DNA methylation events increased in all the treatments compared to control except for SMK 1:500. These results indicate that smoke and slurry both act as efficient biostimulants which result in better performance of plants. Biostimulants also affected the genome-wide DNA methylation profile that resultantly might have changed the plant gene expression profiling and played its role in plant responsiveness to these biostimulants. However, there is need to elucidate a possible synergistic effect of SMK and BGD on plant growth along with gene expression profiling.


Assuntos
Fumaça , Solanum tuberosum , Animais , Solanum tuberosum/metabolismo , Biocombustíveis , Fotossíntese , Metilação
2.
PeerJ ; 9: e11860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434649

RESUMO

BACKGROUND: Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity. Although single gene transformations may not completely reduce photorespiration, increases in plant biomass accumulation have still been observed indicating an alternative role in regulating different metabolic processes. Therefore, the current study was aimed at evaluating the underlying mechanism (s) associated with the effects of introducing a single cyanobacterial glycolate decarboxylation pathway gene on photosynthesis and plant performance. METHODS: Transgenic Arabidopsis thaliana plants (GD, HD, OX) expressing independently cyanobacterial decarboxylation pathway genes i.e., glycolate dehydrogenase, hydroxyacid dehydrogenase, and oxalate decarboxylase, respectively, were utilized. Photosynthetic, fluorescence related, and growth parameters were analyzed. Additionally, transcriptomic analysis of GD transgenic plants was also performed. RESULTS: The GD plants exhibited a significant increase (16%) in net photosynthesis rate while both HD and OX plants showed a non-significant (11%) increase as compared to wild type plants (WT). The stomatal conductance was significantly higher (24%) in GD and HD plants than the WT plants. The quantum efficiencies of photosystem II, carbon dioxide assimilation and the chlorophyll fluorescence-based photosynthetic electron transport rate were also higher than WT plants. The OX plants displayed significant reductions in the rate of photorespiration relative to gross photosynthesis and increase in the ratio of the photosynthetic electron flow attributable to carboxylation reactions over that attributable to oxygenation reactions. GD, HD and OX plants accumulated significantly higher biomass and seed weight. Soluble sugars were significantly increased in GD and HD plants, while the starch levels were higher in all transgenic plants. The transcriptomic analysis of GD plants revealed 650 up-regulated genes mainly related to photosynthesis, photorespiratory pathway, sucrose metabolism, chlorophyll biosynthesis and glutathione metabolism. CONCLUSION: This study revealed the potential of introduced cyanobacterial pathway genes to enhance photosynthetic and growth-related parameters. The upregulation of genes related to different pathways provided evidence of the underlying mechanisms involved particularly in GD plants. However, transcriptomic profiling of HD and OX plants can further help to identify other potential mechanisms involved in improved plant productivity.

3.
Sci Rep ; 10(1): 20879, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257792

RESUMO

Plants employ photosynthesis to produce sugars for supporting their growth. During photosynthesis, an enzyme Ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) combines its substrate Ribulose 1,5 bisphosphate (RuBP) with CO2 to produce phosphoglycerate (PGA). Alongside, Rubisco also takes up O2 and produce 2-phosphoglycolate (2-PG), a toxic compound broken down into PGA through photorespiration. Photorespiration is not only a resource-demanding process but also results in CO2 loss which affects photosynthetic efficiency in C3 plants. Here, we propose to circumvent photorespiration by adopting the cyanobacterial glycolate decarboxylation pathway into C3 plants. For that, we have integrated the cyanobacterial glycolate decarboxylation pathway into a kinetic model of C3 photosynthetic pathway to evaluate its impact on photosynthesis and photorespiration. Our results show that the cyanobacterial glycolate decarboxylation bypass model exhibits a 10% increase in net photosynthetic rate (A) in comparison with C3 model. Moreover, an increased supply of intercellular CO2 (Ci) from the bypass resulted in a 54.8% increase in PGA while reducing photorespiratory intermediates including glycolate (- 49%) and serine (- 32%). The bypass model, at default conditions, also elucidated a decline in phosphate-based metabolites including RuBP (- 61.3%). The C3 model at elevated level of inorganic phosphate (Pi), exhibited a significant change in RuBP (+ 355%) and PGA (- 98%) which is attributable to the low availability of Ci. Whereas, at elevated Pi, the bypass model exhibited an increase of 73.1% and 33.9% in PGA and RuBP, respectively. Therefore, we deduce a synergistic effect of elevation in CO2 and Pi pool on photosynthesis. We also evaluated the integrative action of CO2, Pi, and Rubisco carboxylation activity (Vcmax) on A and observed that their simultaneous increase raised A by 26%, in the bypass model. Taken together, the study potentiates engineering of cyanobacterial decarboxylation pathway in C3 plants to bypass photorespiration thereby increasing the overall efficiency of photosynthesis.


Assuntos
Cianobactérias/metabolismo , Cianobactérias/fisiologia , Fotossíntese/fisiologia , Plantas/metabolismo , Transdução de Sinais/fisiologia , Dióxido de Carbono/metabolismo , Glicolatos/metabolismo , Oxirredução , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA